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Abstract .  This paper d a t e s  equivalence classes of coupled systems of N h e a r  wave 
equationr to motions of an N x N matrix dynamical system. the two-dimensional 
non-Abelian Toda lattice. In particular, the correspondence is shown to relate those 
coupledsystem. of wave equationr with progressing-wave general solutions tomotionr 
of the finite non-Abelian Toda lattice with free ends, generalizing a known result for 
the N = 1 -e. Some non-trivial motions of such Toda lattices are found, and the 
corresponding coupled wave equations and their progrea*ng wave general solutions 
an given. Other consequences of the correspondence and possible applications of the 
progressing waves .we discussed. 

1. Introduction 

In this paper an established relationship between second-order linear wave equations 
and two-dimensional Toda-lattice motions will be generalized to the case of systems of 
coupled linear wave equations and non-Abelian Toda-lattice motions. An application 
of this generalized relationship that we discuss in detail involves systems of coupled 
wave equations that are exactly solvable in terms of progressing zuaues, and we begin by 
reviewing this notion of exact solvability. There is no universally accepted definition 
of ‘exactly solvable’ for (systems of) differential equations. With reference to the 
Schrodinger equation, the notion is sometimes linked to a particular choice of the space 
of functions in which the solution is required to lie [l], while for Hamiltonian systems 
the fundamental concept of complete integrability provides a mathematically natural, 
but by no means unique, standard of solvability [2]. A precise and physically natural 
type of exact solvability for linear wave equations in two-dimensional spacetimes can 
be based on the concept of a progressing wave [3-51. We specialize the definition in 
[5] and define a progressing wave offinite order N on a spacetime of two dimensions 
to be a member of a family of functions of the form 

N 
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where the U" are fixed functions on the spacetime, holding S(z , t )  constant defines a 
characteristic of the spacetime, and f,(z) = dfn-l(z)/dz, with fo(z) being any suffi- 
ciently differentiable function of one variable. We then define the general homogeneous 
second-order linear wave equation on a two-dimensional spacetime, 

[g"'(zc)V,,Vb + 2A"(zC)V, + 2M(zc)] 6 = 0 (1.2) 

where a,  b , c  = 1,2, and gab is a Lorentzian metric with 0, the corresponding covariant 
derivative, t o  be ezactly solvable when its general solution can be expressed as the 
sum of (two) such progressing waves. A simple example of such exact solvability is 
the equation a:,q5 = 0 whose general solution is 4 = a(.) + b(u),  the sum of two 
0th-order progressing waves. It is implicit in [3] and explicit in [4,5] that this example 
can be generalized to the familiar family of equations 

(1.3) 

where I a non-negative integer, which has for a general solution 

where cl, = (-l)"(l + n ) ! / ( l  - n)!n! ,  which is the sum of two progressing waves of 
order 1. 

It appears from [4] that in 1961 (1.3) and (1.4), and transformations of them, were 
the only known cases of such exact solvability for (1.2). The first attempt to substan- 
tially expand the family seems to have been made by Kundt and Newman in 1968 
[SI, who described such exactly solvable equations and their solutions as having the 
chamcteristic propagation properly, since the waves propagate without the scattering 
off of characteristics that occurs in the general case. A few ostensibly new examples 
of exactly solvable wave equations given in [6] were later shown to.be transformations 
of (1.3) and (1.4) [7], but a lasting contribution of [6] was to provide an effective test, 
applicable in principle to  any example of (12), whose satisfaction guaranteed, and 
probably followed from, the exact solvability of the wave equation. To apply the test 
the example of (1.2) is put into a normal form with two functional coefficients and 
from these coefficients one generates in a prescribed way a doubly infinite substitution 
sequence of functions; if the sequence terminates, by producing a vanishing function 
in a finite number of steps, in both directions, then the original equation is certainly 
exactly solvable. In fact formulae for the progressing waves are obtained in terms of 
the functions of the doubly terminating sequence. 

Following [6], the subject developed along two rather independent lines. One se- 
quence of papers focused on finding essentially new but relatively small families of 
exactly solvable equations with useful applications in various a r e a  of applied math- 
ematics and physics. Chang and Janis [8,9] had found families which enabled them 
to identify cosmological spacetimes whose most general purely gravitational pertur- 
bations were expressible in the nice closed form of progressing waves. This work was 
generalized by Couch and Torrence [7] to find many spherically symmetrical space- 
times on which the scalar wave equation was exactly solvable [lo], and to greatly 
extend the results of Chang and Janis on purely gravitational perturbations of COS- 

mological spacetimes [ll]. In a different context, some isolated examples of exactly 
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solvable acoustic equations in two-dimensional spacetimes had been given by Seymour 
and Varley [12], who used them as a starting point in  constructing approximate so- 
lutions to more general acoustic equations, and these examples were generalized to 
find probably all self-adjoint acoustic equations in two-dimensional spacetimes that 
are exactly solvable in the progressing wave sense [13]. A paper by Gottlieb [14] on 
'wake-free' solutions of the acoustic equation in two and three space dimensions was 
also clarified and generalized [15]. 

A second family of results flowed directly from those of Kundt and Newman [6] 
and results in this paper extend that work. I t  was clear from the start that to find 
an example of (1.2) that yielded a doubly terminating substitution sequence of total 
length k amounted to finding a particular solution of an ostensibly formidable (2k)th- 
order non-linear partial differential equation in two independent variables. The papers 
reviewed above were based, in effect, on guessing small families of solutions to that 
equation. Then in [16,17] it was shown that the nonlinear system in question was 
precisely the finite twedimensional free-ended Toda lattice [18]. Since the general 
solution to that system was known [19], one immediatly bad the general solution 
to  the double termination condition of Kundt and Newman, and that probably all 
examples of (1.2) that are exactly solvable in the progressing wave sense had been 
found. It also turned out that  some specific families of wave equations already known 
b" "E cxacuy J V I Y a u L I ; ,  U, W l L l L l l  (1.0, ,U LllC o,,,ry,cuu c.ia,,qJ,=, LYUIU "c: " I C U  U" L U V l l l Y F  

some particular families of solutions of the finite free-ended Toda lattice that may not 
have been recognized earlier [20]. 

It is the main purpose of this paper to generalize t o  systems of coupled linear wave 
equations the basic results reviewed above for single wave equations. For this purpose 
we will need the matrix generalization of the standard Toda lattice, usually referred 
to as the non-Abelian Toda lattice. Toda [18] initiated the study of the system of 
equations 

I- L -  -..-- Ll . .  --,..-La- -c...L:-L / 1  ?\ :"&LA ":".."I-"& --.-.-..I- " - . . lA  I.- ..-"A 1.. :--I..+,. 

(1.5) dzyl - e - ( Y L - Y L - L )  - e - (Yh+I - -Yt )  k E Z 
dt2 - 

usually referred to  as the one-dimensional scalar (Abelian) Toda lattice. Useful al- 

implies that  
?ern&ue fey=. af (1.5) =e ob$zined if ?ve define p. = W .  . . - gi, i~ which c s e  (1.5) 

# ~ ' E + ,  

2 

k E Z  (1.6) dr, - -e-rt--l + 2e-'* - e-'k+1 

dtz - 
or introduce 

k E Z  (1.7) dyk - e - ( ~ ~ - ~ k - ~ )  
k -  nk = -dt 

in which case (1.5) implies that 

Toda interpreted (1.5) mechanically, as a one dimensional array of molecules experi- 
encing nearest-neighbour exponential interactions. This is satisfying for the infinite 
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lattice (1.5) and for its periodic version, which is that specialization of (1.5) charac- 
terized by assuming that yk = vn+k for all k E Z, where n is some positive integer. 
The finite Toda lattice with free ends, which has a particular role in this paper, is 
defined by considering in (1.5) only those equations with k, < k < C,, for some inte- 
gers k, and L,, with yko-, + -CO and yk,+l + +m, and in this case a mechanical 
interpretation is less satisfactory, since the molecules with minimal and maximal in- 
dices experience negative and positive accelerations, respectively, regardless of their 
displacements relative to  their (single) nearest neighbours. In what follows, we shall 
want to allow mk of both signs, which is not easily accomodated by (1.5)-(1,7), and, 
although we may refer t o  the displacement interpretation for motivational purposes, 
we find it convenient to work with the form (1.8). 

The generalization of (1.8) given [21] by 

where u+u = 2 ,  U-U = 1 ,  is usually referred to as the two-dimensional Abelian (scalar) 
Toda lattice, and has been extensively studied [19,22]. A mechanical interpretation 
of (1.9) as a plane array of exponentially interacting stretched strings satisfying 

a2 u v  y k - - e-(Yk+l-YL) - e-(Yk-Yk-I) k E Z (1.10) 

with 

"k = auvk mk = e  ~ - "  -"-.I t E Z  ( i . i i j  

is possible [17], and the system arises in other physical contexts [23]. An alternative 
generalization of (1.8) is to  the one-dimensional non-Abelian (matrix) Toda lattice 

-("L _".-. > 

(1.12) 
d 
dt 
- Mk = N k M k  - MkNk-, 

where the dynamical variables are N x N matrices. This is a non-trivial generalization 
of ( L E ) ,  since the matrices are in general non-commutative, and it is known to arise 
naturaiiy in a few mathematic4 and physicai settings i%,Z]. A useiui survey oi 
antecedents and possible applications of these systems has been given by Popowicz 
[26], who also discusses an obvious further generalization of (1.8) that combines (1.9) 
and (1.12), the two-dimensional non-Abelian (matrix) Toda lattice 

a system that has been studied by Mikhailov [27] and Andreev [28,29], and has some 
physical significance [30,31]. The periodic and finite specializations of (1.9) and (1.12) 
are included in those of (1,13), namely Nk = Nk+, ,  Mk = MA+" for all k E 2, n being 



Wave equations and Toda lattices 1313 

a positive integer, and E,, < k < k,, with Mko = Mk,+l  = 0 ,  so that llvNk0 = Mk,+, 

and BUN,, = -Mk,, respectively. 
In the next section we review the correspondence between the Abelian lattice 

motions and single linear wave equations. We also note a n  aspect of the concept 
of formal self-adjointness for such equations arising under this correspondence, that  
leads in a natural way to an alternative kind of formal self-adjointness for single linear 
wave equations, which we shall call almost selfadjoinlness, and which may not have 
been recognized before. In section 3 we derive the equations relating the motions of 
non-Abelian Toda lattices to systems of linear wave equations, which are our basic 
result. It should be emphasized that these results relate to arbitrary non-Abelian 
Toda lattices and general coupled systems of wave equations, although it is the finite 
free-ended lattices that are relevant to the considerations of exactly solvable linear 
wave equations emphasized in this paper. In section 4 the generalization of this latter 
relationship from the Abelian to  the non-Abelian setting is given. In addition some 
new particular motions of t w e  and three-element free-ended non-Abelian Toda lattices 
for the case of symmetric 2 x 2 matrices are given, along with the corresponding pairs 
of coupled wave equations and their progressing-wave solutions. We are not aware of 
any prior non-trivial examples of this in the literature. 

In the concluding section some open problems are discussed. The specific examples 
of exaciiy soivabie pairs of coupied equations given in seciion 4 were designed to be 
self-adjoint, or almost self-adjoint systems, and corresponded to non-Abelian gener- 
alizations of twc-, or three-element anti-symmetrical Abelian lattice motions, with or 
without centre, respectively. Somewhat surprisingly, when one attempts to extend this 
relationship to the case of longer Toda chains, one meets with novelties peculiar to the 
non-Abelian case whose full significance is as yet unclear. These matters are discussed 
in some detail. In addition we outline the possible application of the progressing wave 
aspects of this work to the study of gravitational perturbations of particular curved 
spacetime backgrounds. Finally, in the Abelian case, some exactly solvable wave equa- 
tions reduce to Schrodinger equations with reflectionless potentials, and we discuss the 
possibility that an analogous reduction in the non-Abelian case might give new and 
interesting sets of reflectionless potentials for multichannel scattering processes. 

2. The scalar case 

In a 1968 paper, Kundt and Newman [6] initiated a search for homogeneous second- 
order linear wave equations in two-dimensional spacetimes whose solutions propagate 
without the continuous backward scattering that is generic for such equations. To this 
end it was noted in [S] that each such equation can be put into either one of the two 
normal forms (a,,a8, - b ) +  = 0 and (8,ca, - d ) $  = 0, where a ,  b,  e ,  and d depend 
in general on U and v .  If we define j o  = a ,  j, = b, do = 4, and inductively define 
{ j k l k c Z ,  { 4 k ) k E Z  by 

(2 .1)  
j k + l 4 k + l  = j k  a u 4 k  

assuming of course j ,  # 0 for all k, we obtain a countable set of equations 

(a,j,a, - &+I) 4k = o k E z (2.2) 
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Similarly, if we define I, = c ,  I-, = d ,  $, = $, and inductively define {I,},,, 
hY 

we obtain a second countabie set 

(a,l,a, - I k - i ) $ k  = 0 k E 2 .  (2.4) 

We shall refer to the equations (2.2) as being in u-normal form, and those given by 
(2.4) as being in u-normal form, and it is not hard to confirm that for all L E Z the 
kih equation in (Z.Z), corresponding to the coeficients j,, jht1, and the kth equation 
in (2.4), corresponding to the coefficients I,, I , - , ,  are the same equation in u-normal 
form and u-normal form, respectively, where 

jk lk  = 1 4, = L E  2. (2.5) 
- .  
I t  wiii be shown in section 3 that in a more generai setting the equations within 
the set (2.2) (respectively, (2.4)) are equivalent in the sense that a solution of any 
one of them generates a solution of every one of them through ( Z J ) ,  (2.2) and (2.5) 
(respectively, (2.3), (2.4) and (2.5)), and we shall designate the corresponding sets of 
equivalence classes of u-normal form equations V s {V,,)),,,, and of the u-normal 
form equations U where A is an appropriate set of indices. It should be 

negative and positive integers. 
The connection between the set of linear wave equations in twodimensional space- 

times and the set of Abelian Toda lattice motions can be based on either of the sets 
of equivalence classes of normal form wave equations U and V .  A particular element 
U(.) o f U  corresponds t o  an equivalence class {U(,,,},,, of u-normal form wave equa- 

emphajized that these resu;ts, taken from iq jiq, ho:: .With k ranging over 'ooih 

&:..-.. ""2 ,I...̂ A- IL- ---------.I: ~ " -  I 1  l ..$"-An2n:""& $.,""*:-.." ... :.I. 
Y I Y l l D ,  U,," bul la Y" b,,C c",L~rp",r",r,g a.squc:rlrG "L C"C,IICLFI,II L"IILLII"IID, Wlh,, 

U(+ - ( $ a p , I ( o p - l ) .  If we now define 

m k t l  = ' k / ' k + l  n, = (aui , ) / i ,  t E z (2.6) 

it follows from (2.3) that the first of (1.9) is satisfied, while the second holds identically, 
so from U(., we have generated a solution of the two-dimensional Abelian Toda lattice, 
defining a map 'TIL( : U -+ M into the set M of motions in the ( i n k ,  n,.) representation. 
Conversely, if we begin with an element of M, (2.6) determines a sequence {I,},,,, up 
to an arbitrary single multiplicative function of the coordinate U ,  and thus an element 
o f U ,  as we can see from (2.4) that  such a freedom in {I,.] does not affect the wave 
equations. Thus, the map TM is in fact a bijection. This map is structure preserving, 
in tho rnneo t h d  thn p m l i v = l p m * o  rolrtinn definino 11. . i~ mannod t.he rlvnmmir~ ... I.._ I_.."_ "... ~~~ ..-. ll..~~ .l.-".il.. _" ....... ~"(,, _I ... I f.r-" ".." -II..- .... _1 
defining the motion of the lattice. Clearly, there exists another representation of the 
same correspondence appropriat,e t o  the classes of v-normal form equations {V,,)},,,. 
If we define 
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then we have 

the first being (2.1), and the second a consequence of (2.7). Thus (2.8) is a description 
of the Abelian Todalattice, alternative to (1 ,9) ,  and (2.7) defines a bijection TF : V + 

P between its set of motions P in the ( q k , p k )  representation and V .  
A provocative observation follows from the existence of a subset of the Toda lattice 

motions which might naturally he called anti-symmetrical, and that can be divided 
into the classes 

Y - k = - Y k  k E Z  (2.9) 

(with, in particular, y, = 0), and 

y-k = - Y k - i  k E z (2.10) 

centred a t  the zeroth element, and between the zeroth element and the element indexed 
by -1, respectively. I t  is easy t o  see from (1.7) that (2.9) and (2.10) correspond t o  

n - k  = -nk  7 n - k  =m,+1 k E Z  (2.11) 

and 

"4 = -nk-1 m - k = m k  k E Z  (2.12) 

respectively, and thus t o  

I - ,  = 111, t E Z  (2.13) 

(in particular, I, = l ) ,  and 

I - ,  = 1 I l k - i  k E (2.14) 

respectively, up to the freedom available in the u-normal forms of multiplying all I, 
by a function of 0 ,  as discussed after (2.6). Thus, we obtain equivalence classes of 
equations U(., in U each including as a representative equation 

(a,a, - L ) ~ ,  = 0 (2.15) 

and 

(a"1,a" - 111,)& = 0 (2.16) 

respectively. Now (2.15)  with arbitrary I - ,  is the most general self-adjoint wave 
equation, since any constant I, can  be transformed to 1 ,  in the formal sense in which we 
do not consider the issue ofboundary conditions on &, so we see that anti-symmetrical 
Abelian Toda-lattice moiions with a centre element (2.9) correspond to self-adjoint 
wave equations (2 .15) .  But, similarly, anti-symmetrical Abelian Toda lattice motions 
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without a centre element (2.10) correspond to equations of the type of (2.16), which we 
will refer to as almost self-adjoint wave equations. Notice that these correspondences 
hold in the opposite direction as well since, given wave equations satisfying (2.15) or 
(2.16), the recursion relation in (2.3) generates 1,s all of which satisfy (2.13) or (2.14), 
respectively; in other words, the antisymmetry conditions are fully compatible with 
the Toda lattice dynamics. Thus the map TG1 : M + U has called attention t o  a 
family of wave equations (2.16) that  might he expected to share many properties with 
the self-adjoint equations (2.15), but  may not have received serious study before. 

To date the most useful set of results obtained from Ti1 : P -3 V concerns wave 
equations with progressing-wave solutions [16,17]. Given a wave equation in v-normal 
form, 

(a"j,a" - jl) 40 = 0 (2.17) 

we say [6] that its substitution sequence {j,),,, is double terminating when jh,t, = 0 
and j h 0 - ,  = 0 for some k, 0, k, < 0. But it was shown in [6], using (2.1), (2.3) and 
(2.5), that  in this case (2.17) is solved by 4, = d A  + I o + R ,  where 

4.4 = (jF18vj1)(jT1auj2) ~ " ( j ~ ~ 8 u j k l ) a ( v )  
(2.18) 

$R = (11~%-1) (11~aul -2 )  "'(~~,'aulkO)b(u) 

with .(a), b(u) arbitrary functions of one variable, where there are k, and -k, par- 
tial differentiations, respectively, and they operate on everything t o  their right. Thus 
(2.17) has a general solution expressible as sums of examples of the mathematically 
and physically simple progressing waves of finite order defined in the first section. 
Now the double termination condition on { j k ) h E Z  corresponds, under T, : V + P, to 
a motion of a finite Toda lattice with free ends. Thus each such Toda lattice motion 
picks out an equivalence class of k, - k, + 1 linear wave equations, with individual 
equations corresponding to adjacent pairs ( jk , jk t l )  of coefficient functions in the sub- 
stitution sequence, each of which has a progressing wave general solution. In fact, a 
general solution of the free-ended finite Toda lattice is known [19], so TF1 : P -+ V 
yields an explicit construction of all linear wave equations in two-dimensional space- 
times with progressing wave general solutions, to the extent that the known general 
solution of the (non-linear) Toda lattice equations includes all solutions, and that no 
non-terminating sequence can give rise to linear wave equations with progressing wave 
general solutions. This probably gives a full solution to the problem that motivated 
the paper [6] which was the starting point of this section, although the results being 
reviewed here go somewhat beyond the original work of Kuudt and Newman. Natu- 
rally these progressing wave results could equally well have been derived with reference 
to u-normal form equations and T i1  : M +U. 

3. The non-Abelian case 

We begin with the matrix generalization of (1,2), i.e. with the system of linear wave 
equations 

(g"*V,V, + 2A0V,, + 2 M )  = 0 (3.1) 
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where a,b = 1,2, gob is a Lorentzian metric with V, the corresponding covariant 
derivative, Aa and M are N x N matrices, and @ is an N x 1 matrix. Although it is 
easy to see that in the case N = 1, (3.1) is a particular geometrical representation of 
the most general second-order linear wave equation in a two-dimensional spacetime, 
it is obvious that for N 3 2, (3.1) is a special family of systems of such equations, 
which we choose to cast in a geometrical form. Systems of equations of this kind 
do arise in physical problems. Consider for example a vector-valued complex field 
(Higgs field) coupled to  a non-Abelian gauge field, described by the (anti-Hermitian) 
matrix-valued gauge potential A,. The Lagrangian for such a field is of the form L = 
(D,@)t(D"@) + where Do@ = (V, + A m ) @  is the gauge-covariant derivative, 
and p a mws matrix. Then the field equation for @ which we obtain by varying the 
action is D"D,@-p@ = 0, which is of the form (3.1) if we set 2M = V,A"+A,A"-p. 

It  is not necessary, but convenient, to describe our calculations in language appro- 
priate to gauge theories. If we gauge the field @ by the transformation 

@' = G(z") (3.2) 

i t  follows that (3.1) is replaced by 

(gabV0.Vb + 2A'"V, + 2M')'Z" = 0 (3.3) 

where A" = GA'G-' +gobGGbG-', and M' = GMG-'+$ga'GV,,VbG-'. In two 
dimensions it is always possible to  choose coordinates in which gob is manifestly confor- 
mally related to the Minkowski metric qeb, and we do so, introducing null coordinates 
U and v in which 

(3.4) 

so that (3.1) becomes 

where 
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in which case (3.5) takes the u-gauge form 

(a,L,a, - ~ - , ) r y ,  = o (3.9) 

with Lo defined by a,Lo = LOA;, L- ,  = - L o g 1 I 2 M ' ,  and qo = W, where the 
- l , O ,  +1 subscripts have been introduced in anticipation of subsequent developments, 
Equations (3.7) and (3.9) are the systemic generalizations of the k = 0 cmes of (2.2) 
and @4j, the v-normai form and u-normai form equations of section 2, respectively, 
and we will now generalize the calculations outlined there to obtain the analogues of 
(2.2) and (2.4) for all k E Z .  

We consider first the u-gauge equation (3.7) and inductively define {J,},,, by 

(3.10) 

generalizing (2.1). Solving (3.7) for a,, applying 8, to both sides of the resulting 
equation, and using a,a, = a,a,, the second equation in (3.10) results in [a,Jla,  - 
JZ]al = 0, given the first equation of (3.10). Iterating in both directions with respect 
to l e ,  we generate the set of equations 

(a,J,a, - J , + , ) Q ,  = o k E z .  (3.11) 

Beginning with the u-gauge equation (3.9) and defining {L,},,, and {qk},,, by 

L;'L,-, = L&L, - ~ , ( L ; ~ B , L , )  
k c Z  (3.12) - 

Lk-lqk-l = L k a v q k  

we similarly generate the set of u-gauge equations 

( a u L k a u - ~ ~ - l ) ~ k = o  k E z .  (3.13) 

As beiore, we denoie the seis of equivaience ciasses of sysiem oi wave equations 
defined by (3.11) and (3.12), V = {V,,,},,, and U = {U,?,],,,,, respectively. If (3.7) 
and (3.9) represent the same set of field equations in the different gauges, there should 
be asimple connection between them, and similarly for (3.11) and (3.13), pairwise. In 
fact one can show directly that the kth elements of (3.11) and (3.13), characterized by 
the pairs of coefficient functions ( J , ,  J,+,) and (L, ,  L k - , ) ,  respectively, are the same 
equation in v-gauge and u-gauge, respectively, given 

J,L, = I  Q,= JLIQ, k G Z  (3.14) 

which generalizes (2.5). Applying the general formalism of gauge theories we can pass 
from the coefficients in (3.11) and (3.13) to the corresponding gauge potentials via 
a,J ,  = J,A:, J,+, = -J ,g1I2M'> &Lk = LkA; ,  L,-l = -L ,g1I2M' ,  and thence 
to the gauge fields Fa, = V a A b  - VbAa +[A, ,  Ab] to obtain 

(3.15) 
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for the non-vanishing components of the gauge field in the u-gauge and the u-gauge, 
respectively, and it follows from general considerations, or can be shown directly, that  

'U"- k - j - I ~ k  k u v  J k (3.16) 

I t  is satisfying that these gauge field components, (3.15), occur naturally in our basic 
generating formulae (3.10), (3.12). Actually, the normal forms (3.11) and (3.13) do 
not completely fix the gauge. It is easy to see that the transformation to 

J;  = U(u)  JkV(v )  @; = V - ' ( V ) @ ~  k E Z (3.17) 

leaves (3.10) and (3.11) unchanged in form, while the transformation to 

r !  - V f 9 i  r l i l r , i  *! k - "  - 11-1 ( , , i I I .  \*I 'k I b C 7  ~ (5.18) - k  - \ I -k" \ - I  

leaves (3.12) and (3.13) similarly unchanged, where U and V are arbitrary matrix- 
valued functions of one variable, so that (3.17) and (3.18) are the residual gauge 
freedoms in the v-gauge and u-gauge equations (3.6) and (3.8), respectively. 

If we now define 

M k t , = L L ~ , L ,  N k = L ; ' a , L ,  k E Z  (3.19) 

i t  follows that the twedimensional non-Abelian Toda-lattice equations (1.13) are satis- 
fied, the first as a consequence of the first equation of (3.12) and the second identically. 
If we let M represent the non-Abelian Toda-lattice motions, as in the Abelian case, 
(3.19) defines a map T, :U -+ M generalizing that given in section 2 for the Abelian 
case. Once again it is, up to a trivial gauge transformation included in (3.17), a 
bijection. Working instead in the v-gauge and defining 

Q k = J ; l J k t l  P,=J;'a,J,  ' k E Z  (3.20) 

we find similarly a matrix generalization of (2.8), 

(at + 8,) Qk = a,Q, = QkP,+i - PkQk 

which is an alternative representation of the twedimensional non-Abelian Toda lattice, 
and we have a bijection up to gauge Tp : V - P, where P is the set of motions of the 
non-Abelian Toda lattice in the representation (3.21). 

It is worth noting that one could write down a variety of distinct non-Abelian 
generalizations of (1.9), and it is satisfying that the above derivation led to (1.13), the 
generalization that has already appeared in the literature in several contexts [26-311. 

4. Sysiems pi."gi.essiiig-wave ao:.uiioi,s 

The correspondence between motions of finite free-ended Abelian Toda lattices and 
single wave equations with progressing-wave general solutions carries over nicely to 
the case of systems. We define a sequence {J,),,, to be doubly terminating when 
Jk,+, = 0, L k o - ,  = 0 for some integers k ,  2 0, CO < 0. It follows immediately from 
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(3.10), (3.12) and (3.14) that in this case the equation (8,Joa, - J , ) O ,  = 0 is solved 
by a, = @ A  + Lo@,, where 

* A  = (J;'a,J,)(J,'a,J,)...(J,'a,J,,)A(v) 
(4.1) 

* R  = (LIh%L-l)(L&%L-2) " ' ( L ~ o l a u ~ k o ) B ( u )  

where A(w) and B(u) are N x 1 matrices of arbitrary functions of one variable, there 
are k, and - E ,  partial differentiations, respectively, and they operate on everything 
to their right. Clearly, every system of equations in the same equivalence class can 
be similarly satisfied. But (4.1) is a systemic generalization of progressing waves, and 
we have found a progressing-wave general solution for these systems of equations. As 
before, double termination for the sequence { J k I k E z  corresponds under T, : V + P 
to a motion of a finite non-Abelian Toda lattice with free ends. 

The construction of explicit examples of such motions is at  present a non-trivial 
exercise compared to the Abelian case, where by building on earlier work [19] an 
explicit construction of probably all linear wave equations with progressing-wave solu- 
tions were constructed [lq. In the non-Abelian case the complete integrability of the 
finite Toda lattice bas been established in both the periodic [32] and non-periodic [33] 
cases, but this kind of integrability does not in itself provide an explicit construction 
of solutions of the dynamical system. Backlund transformations for a restricted class 
of non-Abelian free-ended lattices, and some particular motions for that same class, 
have been given by Andreev [28,29], but from the point of view of the corresponding 
coupled wave equations Andreev's restricted class is not a particularly natural one. 
We will derive other special solutions here that correspond to (exactly solvable) truly 
coupled systems of linear wave equations that are particularly basic in the sense that 
they are formally self-adjoint. 

We work with the representation (3.20), (3.21) of the lattice dynamics and, for our 
first example, we start with the assumption that the motion satisfies 

J- ,  = J;il k E 2 (4.2) 

which is the natural generalization to the matrix case of an anti-symmetrical motion 
centred between the zeroth and first elements. Thus it is the matrix generalization 
corresponding to  (2.10), but in the v-gauge rather than the u-gauge, and differently 
centred. The consistency of this ansatz with the dynamical equations is not a foregone 
conclusion in the non-Abelian case. Solving (3.10) for J ,  and J:: yields 

J ,  = J ,  [-a,(J;'B,J,) + J:] 

J:: = [a,(J,a,  J ; ' )  + Jf] J ,  
(4.3) 

where (4.2) for k = 0 bas been used, and it is easy to derive that (4.2) for k = 1 
implies that 

(8,Ji) J;' (a,Ji)=(a,Ji) J;' ( ~ " J I )  (4.4) 

which is identically satisfied only in the Abelian case. Imposing in addition the condi- 
tion that the lattice be just two elements long with free ends, i.e. J ,  = JI: = 0, leads 
to 

O,(J;'B,J,) = J:  (4.5) 
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and in fact (4.4) and (4.5) are equivalent to (4.3) supplemented by the conditions for 
double termination. We shall set up a second example as well, since its mathematical 
treatment turns out t o  be simply related to that of the first one, a t  least in the case 
to which we will be specializing. We first assume that 

J - ,  = JL1 k E Z  (4.6) 

the matrix generalization of an anti-symmetrical motion centred on the zeroth element. 
I t  is easy to show that combining (4.6) for b = 0,1 with the dynamics again implies 
(4.4), and impasing Jz = J:: = 0 specifies our second dynamical problem, which is 
equivalent t o  (4.4) and 

B,(J,'a,J,) = J l .  (4.7) 

I t  is worth noting that  in the Abelian case, where (4.4) is identically satisfied, (4.7) 
reduces to  the familiar Liouville equation, LJiuf = e!, with the general solution f = 
2Lr'(u)V'(v)/[U(u) + V(v)]' .  Thus (4.7) is a natural matrix generalization of that 
equation. 

We next assume in both examples that 

J ~ ( u , v ) =  J ~ ( u + u ) =  J1(.) (4.8) 

in which case (4.4) is identically satisfied, and our two examples reduce to 

B,(Jr'a,J,) = J: (4.9) 

and 

B,(J;'LJ,J,) = J ,  (4.10) 

respectively. As a further simplification we assume in both cases, with an eye to the 
corresponding set of coupied wave equations, that jl is a symmeiric mairix. 

We shall solve the three-element example, which has  been reduced to solving (4.10), 
and subsequently use a simple transformation to obtain solutions for the two-element 
equation (4.9). The first step is to linearize the problem. It follows directly from 
(4.10) and its transpose that 

(4.::) r - l i a  7 1 I I  I \ 1-1 - r 
J i  l w e J i J  - l o e J i l J i  - 

where C is a constant anti-symmetric matrix. We assume that C # 0, as it can 
be shown that this guarantees that our non-Abelian lattice motion is not equivalent, 
by diagonalizing J, by a similarity transformation, to merely juxtaposing uncoupled 
Abelian lattice motions. If we now define 

F = J;'(B,J,)J;' = -aZ(~;l) (4.12) 

i t  follows from (4.10) that F satisfies both 

FZ = 2J;' + Jr'BJ;' (4.13) 
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where B is a constant symmetric matrix, and 

a , ~  + C F  + I + BJ;' = o (4.14) 

where I is the identity matrix. Then by differentiating (4.14) we find that F satisfies 
the second-order constant coefficient linear matrix differential equation 

8zF + Ca,F - B F  = 0 .  (4.15) 

In principle, to obtain a solution to (4.10) we now solve the linear equation (4.15) for 
F and substitute the result into (4.11), (4.13) and (4.14) to eliminate any spurious 
solutions, and to obtain J,. Thus we have effectively linearized the solving of the 
non-linear equation (4.10), although we shall see that the last step results in non- 
linear algebraic constraints on the constant components bii of B and the constants of 
integration introduced when (4.15) is solved. 

The algebraic manipulations are tractable if we make the final simplifying assump- 
tion that the matrices are 2 x 2, which means that the corresponding system of wave 
equations comprises just two coupled equations. Most of the solutions of (4.10) in this 
case can be obtained as follows. We first rescale both the coordinate r and J, so that 
(4.10) is preserved and at  the same time we have 

c = ( ;  i') (4.16) 

Next we note that under a constant similarity transformation on J,, C, and E ,  equa- 
tions (4.10)-(4.14) are invariant, and that in the 2 x 2 caae the similarity matrix can 
be chosen such that B is diagonal and (4.16) is unchanged. Thus we can take B to be 
diagonal without loss of generality. If we define 

d = 1 + ( b l l  - b22)' - 2 ( b l l  + bz2) (4.17) 

then the four roots of the characteristic polynomial of the first-order system equivalent 
to the first column of (4.15) are given by f m  and +n, where m, n are the (possibly 
complex) quantities given by 

m = [ i ( b , ,  + b2, - 1 + n = [ f (b , ,  + b,, - 1 - &)]'". (4.18) 

Precisely when the four roots are distinct, i.e. when d # 0 and det B # 0, the elements 
f i j  satisfying (4.15) can be expressed in the form 

f l2  = Q, sinh mz + a, cosh m r  + sinh nz + a4 cosh nz (4.19) 

and 

(4.20) 

where Q,, a2, agr and Q~ are (possibly complex) constants. The constraints on the 
constants required to eliminate spurious solutions turn out to be 

Q: - ai = ai - ay = 1/d. (4.21) 
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This construction provides solutions to (4.10) when the four roots mentioned above 
are distinct, and when all of the various denominators are non-vanishing. This group 
of solutions, which includes 'almost all' solutions, can be succinctly characterized as 
those for which the constants satisfy the inequality 

~ b l l ~ , Z ( b l l +  bzz - 1) # 0 (4.22) 

and will be referred to as the generic solution for our special case of (4.10). Non- 
generic solutions can be constructed in a similar way. It is easy to see that for any 
choice of B such that (4.22) is satisfied, there is a two-parameter fanuly of choices for 
a,, a2, as, and a4 for which F, and thus J,, are real, so the generic solution contains 
four constants constrained only by the inequality (4.22). 

For concreteness we will give a particularly simple specific example. If we choose 
m = 1, n = i, b,,  = (1 + &)/2, b,, = (1 - A ) / 2 ,  a ,  = a3 = 0 and a, = a4 = 1/2, 
then the solution to (4.11) is 

(J1)11 = - a  [(I + &) COS= + (A- 3)coshz - 4]/y 

(Jl)lz = ( s inr+s inhz) /y  (4.23) 

(J1)2, = +I(& - 1) GOBI + (&+ 3) coshz - 4]/y 

where 

y = - s inzs inhz  - 2coszcosh r + &(cosz + cosh z) - 2 .  (4.24) 

To complete our calculations we also want to give solutions to (4.9). It is easy to show 
by direct substitution that if F and J ,  satisfy (4.12) and (4.10), then F-' satisfies 
(4.9), and so the above construction also provides us with a generic solution of the 
twoelement example. For the particular case in which the three-elemeut J ,  is given 
by (4.23) the corresponding two-element solution to (4.9) is the J, whose elements are 

( J , ) , ,  = :( 1 + &) [( 1 + &) sin z + (3 - &) sinh z] / 6  

(Jl)lz = n(cosz +coshz)/6 (4.25) 

( J l ) z ,  = $(A- 1)[(1-&)sinz+(3+&)sinhz]/6 

where 

6 = -2s inrs inhz  + coszcosh z + 1 .  (4.26) 

The progressing-wave solutions to the systems of wave equations in these two examples 
are given by (4.1), specialized to the case k, = l , k o  = -1  with J given by (4.23) 
and Jo = I, and specialized to  the case k, = 1,  ko = 0 with J ,  = J{ given by (4.25), 
respectively. 

It is worth noting that Backlnnd transformations, as well as some particular 2 x 2 
solutions, were given by Andreev [28,29] for a class of finite free-ended non-Abelian 
lattice motions defined by the pair of (equivalent) subsidiary first-order differential 
conditions 

1 .  

(4.27) 
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where the sum extends over all the elements in the lattice. His results are of general 
interest in the context of this paper, but if his subsidiary conditions are imposed 
simultaneously with our assumption of a symmetric J, ,  it follows that in the specialized 
case which we are considering, C in (4.11) vanishes, and the resulting motion can be 
gauged to one with all the J k  diagonal. Thus if his results are specialized to  correspond 
to  self-adjoint systems of wave equations those equations are essentially uncoupled, 
and so his results complement, rather than overlap with, ours. 

5. Conclusion and open problems 

The formalism developed in this paper raises a number of interesting questions. The 
first one, which we shall discuss in some detail, is of a formal nature as it concerns a 
possible refinement of the definitions of self-adjointness and almost self-adjointness for 
systems of linear wave equations. We saw in section 2 that, in the Abelian case, if a 
Toda-lattice motion of any length has a fixed centre, i.e. if j, = 1, then the motion is 
anti-symmetrical, i.e. j, = j : ; ,  k E 2, and a t  the same time the corresponding wave 
equation lI:"q5 - j,q5 = 0 is formally self-adjoint for arbitrary j , .  It  is natural to look 
for a non-Abelian generalization of this pleasing correspondence, but the situation is 
more complicated in the matrix case. In the example considered in section 4 it was 
first assumed that J ,  = I, implying that J ,  = J:;, a first step in characterizing a 
non-Abelian motion to  be 'anti-symmetrical', and independently assumed that J ,  = 
J F ,  with the consequence that  the coupled system of wave equations, with the two 
coefficient matrices I and J , ,  was formally self-adjoint. Regardless of the symmetry 
properties of J, ,  the demand that Jz = J:;, i.e. the stipulation that the motion 
be 'anti-symmetricai! at ieast as far as the second eiements on eiiher side of the 
fixed centre, resulted in the first-order differential condition (4.4) on J , ,  which is not 
identically satisfied in the non-Abelian case. One can in fact show that given 

J ,  = I J ,  = J:: (5.1) 

J k = J : i  2 < k < K  (5.2) 

the condition 

with integer I< 2 2, is equivalent to 

(5.3) 

modulo the lattice dynamics. Thus a non-Abelian motion can be 'anti-symmetrical' 
out to I< elements on either side of the centre, where I< is a positive integer, but not 
beyond, and furthermore this is equivalent t o  I< - 1 differential conditions on J,. It  
can also be shown that if instead of (5.1) we assume 

J ,  = J: J ,  = 51' (5.4) 

J k = J Z  2 < k g I < .  (5.5) 

then (5.3) are equivalent to 
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Thus either of the assumptions (5.1) and (5.4) is propagated to fK elements along 
the lattice, in the sense of (5.2) and (5.5) respectively, if and only if the same set of 
IC - 1 conditions, (5.3), are satisfied by J1. This suggests that although either (5.1) 
and (5.2) or (5.4) and (5.5) may single out an interesting subset of lattice motions, the 
simultaneous imposition of both Jk = J:: and Jk = JZ, 0 < k < I(, produces a more 
fundamental subset of motions. Support for this notion follows from a consideration 
of the corresponding systems of linear wave equations. 

Since by definition the system of equations (3.11) is formally self-adjoint when it 
is of the form 

with D a constant symmetric matrix and J, any symmetric matrix, we see that anon- 
Abelian Toda-lattice motion that satisfies both (5.1) and (5.2),  and (5.4) and (5.5), 
corresponds to a proper subset of the formally self-adjoint systems of equations that 
we might call the differentiab/y self-adjoint systems of degree K, i.e. those for which 
Ja = D = I, and J, is not only symmetric but satisfies the I(-1 differential conditions 
included in (5.3). It is only by means of this refinement of self-adjointness that one 
can maintain the correspondence between anti-symmetry of Toda-lattice motions and 
self-adjointness of wave equations in the non-Abelian case. Note that a constant and 
symmetric D in (5.6) can be gauged to I while preserving the symmetry of J, if 
and only if it commutes with J,. Thus the algebraic condition in the refinement, 
D = I, has content, although the set of differential conditions is more striking. There 
is an analogous notion of diffemntiobly almost self-adjoint of degree IC for systems of 
coupled wave equations based on ‘anti-symmetrical’ non-Abelian motions without a 
centre that involves the same conditions (5.3), but we will not discuss the details here. 
Whether or not any of these generalizations or refinements of formal self-adjointness 
is actually of significance for the theory of linear differential operators is an open 
question. 

There are also interesting unsolved problems concerning the free-ended non- 
Abelian finite-lattice motions. Despite the simplicity of the general solution of the 
scalar Liouville equation, the matrix generalization of that ubiquitous equation seems 
not so easily dealt with. In section 4 we gave its generic solution in the case when 
the dependent variable is a symmetric 2 x 2 matrix depending on U and U ,  only in the 
combination U + w, and it was a non-trivial construction. This is an extremely special 
example o f a  finite-lattice motion, and it would be of interest to construct wider classes 
of solutions to the matrix Liouville equation and, more generally, to find a variety of 
motions of longer finite lattices. 

The corresponding exactly-solvable truly-coupled systems of wave equations 
thereby obtained could be of interest in their own right, with applications of their 
progressing-wave solutions to various fields on curved spacetimes being a case in point. 
If, for example, one examines perturbations of the multicomponent gravitational field 
for a fixed background spacetime, one naturally obtains a coupled system of linear 
wave equations. The results reviewed in the introduction concerning such pertur- 
bations were restricted to background spacetimes that are both homogeneous and 
isotropic, i.e. to cosmological spacetimes, because for this class it was possible to find 
a single field, governed by a single equation, that could serve as a potential for the 
full set of components. Thus exact solvability of a single equation gave exact results 
for the system governing the full set of perturbations. Given significant families of 
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exactly solvable systems of coupled equations it may be possible to  find spacetimes 
possessing much less symmetry whose gravitational perturbations are governed by sets 
of wave equations that cannot be decoupled, but that are exactly solvable in terms of 
progressing waves, thereby greatly extending these results. 

We will conclude by discussing a possible application with classical roots, but with 
implications for problems of much current interest in mathematical physics. In a well 
known 1949 paper Bargmann gave a set of simple potentials for the Schrodinger equa- 
tion for which the reflection coefficient vanished [34], and a few years later Kay and 
Moses gave the set of all non-singular reflectionless potentials for the one dimensional 
Schrodinger equation [35]. Reflectionless potentials for the Schrodinger equation are 
easily related to  wave equations with progressing-wave solutions [36], and this will 
presumably generalize to a connection between systems of exactly solvable wave equa- 
tions and sets of reflectionless potentials for multichannel scattering processes. There 
is some iiieraiure on ihe efiori io consiruci such seis or' poteniiais [27-%?]. Given the 
connection provided by the inverse scattering method between reflectionless potentials 
for single Schrodinger equations and multisoliton solutions of equations such as the 
KdV equation, the matter would seem to be of increasing interest at the present time, 
since as methods for the construction of motions of the finite freeended non-Abelian 
Toda lattice evolve, corresponding sets of reflectionless potentials may lead t o  the con- 
struction of multisoliton solutions for matrix-valued nonlinear evolution equations. 
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